矩阵求导总结

基本公式:

1
2
3
4
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

行向量Y’对列向量X求导:

1
2
dX'/dX = I
d(AX)'/dX = A'

列向量Y对行向量X’求导

1
dY/dX' = (dY'/dX)'

向量对向量求导:
图1

向量积对列向量X求导

1
2
3
4
5
6
7
8
注意与标量求导有点不同。
d(UV')/dX = (dU/dX)V' + U(dV'/dX)
d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

重要结论:
d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A
d(AX)/dX' = (d(X'A')/dX)' = (A')' = A
d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

标量对向量求导:
替代文字?
替代文字?